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ABSTRACT 
The C-section rate of a population of 22,175 expectant 
mothers is 16.8%; yet the 17 physician groups that serve 
this population have vastly different group C-section 
rates, ranging from 13% to 23%.  Our goal is to 
determine retrospectively if the variations in the observed 
rates can be attributed to variations in the intrinsic risk of 
the patient sub-populations (i.e. some groups contain 
more ``high-risk C-section'' patients), or differences in 
physician practice (i.e. some groups do more C-sections). 
We apply machine learning to this problem by training 
models to predict standard practice from retrospective 
data. We then use the models of standard practice to 
evaluate the C-section rate of each physician practice. 
Our results indicate that although there is variation in 
intrinsic risk among the groups, there is also much 
variation in physician practice. 

1. INTRODUCTION 
Our goal is to determine if groups of patients seen by 
different physician practices have different intrinsic risks 
for C-section.  Our approach is as follows: we train a 
model to predict standard practice using machine learning 
(in this study, bagged probabilistic decision trees).  We 
use the model to estimate the intrinsic risk of each group 
by averaging the C-section risk the model predicts for 
each patient in that group. Differences between the 
observed and predicted C-section rates indicate physician 
groups with behavior different from that predicted by the 
standard practice model. 
 
Intrinsic factors are factors related to patient health that 
should be used to make care decisions. Our data includes 
82 intrinsic factors: pre-pregnancy health-and-physical 
factors such as maternal age, weight, smoking, diabetes, 
and prior pregnancy; mid-pregnancy factors such as 
changes in maternal blood sugar and estimated fetal 
weight; and labor factors such as maternal blood pressure 
and fetal distress. These intrinsic factors are the inputs to 
the model trained to predict C-section. Extrinsic factors 
are all factors not entailed by these inputs. Extrinsic 

factors include type of physician practice, type of patient 
insurance, and patient socio-economic status. The model 
trained to predict standard practice is allowed to use 
intrinsic variables to predict patient risk. If the model is 
accurate, it will compensate for differences between 
patients (or groups of patients) caused by the intrinsic 
variables, but will not compensate for differences due to 
extrinsic variables it did not have access to. This will 
allow us to determine if the variations in observed C-
section rates can be attributed to variations in intrinsic 
risk of the patient sub-populations (i.e., some groups see 
more ``high-risk C-section'' patients), or if they are due to 
differences in physician practice (i.e., some groups do C-
sections more often). 
 
Section 2 discusses the problem of C-section rate. Section 
3 describes our methodology. We use bagged decision 
trees to train a model of standard practice.  Section 4 uses 
this model to predict the intrinsic risk of different groups 
of patients. Differences between observed and predicted 
risk represent a possible difference between physician 
behavior and standard practice. Section 5 discusses the 
assumptions made by this approach. 

2. BACKGROUND 
2.1 Problem Definition 
In the U.S. about 17% of births are by C-section.  In 
Europe, the C-section rate is substantially lower, but 
outcomes do not appear to be worse.  Poma notes that the 
C-section rate in the U.S. increased significantly, yet there 
has not been a related improvement in neonatal outcomes, 
suggesting the rate is unnecessarily high [4].   The 
Pennsylvania Health Care Cost Containment Council 
notes that cesarean deliveries carry increased risk of 
complications and longer patient recovery times as well as 
higher health care costs [3]. The average cost of a C-
section in Southwestern PA in 1998 was $7,885 and the 
average cost for a vaginal delivery was $4,787.  
 
There are medical and financial benefits to a lower C-
section rate if outcomes are not adversely affected. 



Insurance companies in the U.S. have begun applying 
financial pressure to lower the C-section rate. One such 
policy is to pay for a fixed percentage of C-sections. If a 
practice has a rate higher than the quota, it must make up 
the difference.  If the rate is lower, it makes more profit. 
There are problems with using financial pressure to reduce 
C-sections.  One problem is the tragedy of the commons: 
individual doctors often have incentives not to lower their 
C-section rate, even though groups of physicians would 
benefit by lowering their group rate. This problem is 
complicated by the fact that doctors do not see patients of 
equal risk.  Some doctors specialize in high-risk 
pregnancies and thus should have a higher C-section rate. 
To evaluate practices fairly, an objective model needs to 
be developed that can predict whether or not patients 
should have received C-section. 
 
In [1], the C-section rates of different hospitals are 
compared after correcting for the fact that hospitals saw 
patients with different risks. They constructed a logistic 
regression model to predict patient risk. Recent studies by 
members of our group indicated that machine learning 
methods such as decision trees and neural nets might be 
preferable to logistic regression [2]. 

 
Commonly agreed upon C-section risk factors were used 
in [3] to distinguish between high and low-risk patients. In 
[4], an attempt was made to determine obstetrician 
characteristics that affect C-section rate.  The extrinsic 
factors correlated with lower C-section rates were: 
younger obstetrician age, graduation from a domestic 
medical school, belonging to a group practice, and a 
smaller number of births. 
 

2.2 Magee C-section Database 
The database we use is from Magee-Women's Hospital. It 
contains 22175 patients from 1995-1997. Each record has 
144 attributes, of which we use 82 as intrinsic inputs for 
learning. Each patient in the database is from one of 17 
different physician group practices. The goal of our work 
is to identify physician groups for which the actual C-
section rate and the rate predicted by our model of 
standard practice differ significantly. 
 

3. APPROACH 
In preliminary experiments we tried several different types 
of decision trees and neural networks. We found that the 
MML decision trees in Buntine’s IND software performed 
particularly well [5].  MML decision trees are grown to 
full size (often many thousands of nodes) and are not 
pruned.  Instead, Bayesian smoothing is applied to the tree 
to yield predictions at leaf nodes that are a function of the 
class probabilities along the entire path leading to each 

leaf node.  We often find that MML trees excel at 
predicting probabilities. To further improve the predicted 
probabilities, we applied bagging [9],[10] to the MML 
decision trees.  See [9] for a description of why bagging 
usually improves the quality of probabilities predicted by 
decision trees.  The bagged trees were trained as follows: 
 

1. Bootstrap samples are drawn to form 100 train 
sets T1…T100. 

2. An MML decision tree is grown on each Ti. 
3. For each example in the dataset, we average the 

predictions of the trees that did not contain this 
example in their training set. 

 

4. RESULTS 
It is critical that the probabilities generated by the model 
trained to predict standard practice are well calibrated.  
Suppose the model of standard practice was excellent at 
ordering patients by relative risk (and thus had excellent 
ROC1 performance), but the probabilities it predicted 
were consistently low (high).  Then the aggregate risk 
obtained by averaging the predicted probabilities for a 
group of patients would consistently underestimate 
(overestimate) the true aggregate risk and most physician 
practices would appear to have C-section rates higher than 
(lower than) is warranted by the patients they see.  But 
this is not a real   problem because it is easy to force the 
average predicted rate to equal the average observed rate 
by normalizing. 
 
A more serious concern is that the model of standard 
practice must be well calibrated in the low and high-risk 
tails of the population.  For example, suppose the model 
probabilities are normalized, but that the model tends to 
predict somewhat low probabilities for high risk patients 
and somewhat high probabilities for low risk patients.  
The model might predict p=0.6 for patients that have true 
risk of C-section p=0.8.  This model might be accurate, 
and have good ROC, but when applied to a group of 
patients with disproportionately high risk, would 
underestimate the group’s aggregate risk, thereby causing 
us to suspect that the group was performing C-sections at 
an unwarranted high rate.   
 
Poor calibration in the tails is common.  Before using the 
bagged decision tree model of standard practice, we must 

                                                                 
1 The  Receiver Operator Characteristic (ROC) curve is a plot of 

the true-positive rate vs. the false-positive rate as the 
prediction threshold is varied from 0 to 1.  The area under the 
ROC curve (AUC) is a statistic that commonly is used to 
summarize the performance of a model.  AUCs closer to 1 
indicate that the model is better at predicting higher risk for 
patients that truly have elevated risk. 



verify that it has good calibration.  To do this, the risk 
interval [0,1] was split in 19 overlapping subintervals of 
width 0.1: [0,0.1], [0.05,0.15],…,[0.9,1]. The patients 
with predicted risk falling in each subinterval were placed 
in each subinterval and used to calculate the average 
observed C-section rate for that subinterval. Figure 1 
shows a plot of the observed C-section rate for each 
subinterval plotted against the predicted C-section rate for 
that subinterval. The plot is remarkably true to the 45 
degree line, indicating excellent calibration. The average 
absolute difference between the predicted risk and 
observed C-section rate is an extremely low 0.013. 

 

 

 

To verify that the model we train is good at predicting the 
standard practice, we also measured its accuracy and ROC 
on test cases held out of the training sets.  The accuracy of 
the model on these test cases is 87%.  The ROC Area of 
the model on the same test cases is 0.9233.  These figures 
suggest the model is very good at predicting standard 
practice.   

 

After checking the model’s calibration, we used the model 
to predict the aggregate risk of each of the 17 physician 
practices by averaging the predicted risk of all patients in 
each practice. This yields the expected C-section rate for 
each group, corrected for the risk of the patients in that 
group. Figure 2 is a scatter plot of the observed C-section 
rate vs. the predicted rate for each of the 17 physician 
groups. Points that fall near the diagonal have an observed 
C-section rate similar to that predicted by the models.  

Physician groups having lower C-section rates than the 
models predict fall in the upper left. Physician groups 
having C-section rates higher than the models predict fall 
in the lower right. 

 
Most physician groups fall near the diagonal, indicating 
that their C-section rates are comparable to the rates 
predicted by the standard practice model. Physician 
groups H, J, and O, however, exhibit high C-section rates 
that may not be warranted.  O’s high rate appears to be 
somewhat justified because the model predicts the patients 
in group O have the highest risk of all 17 groups.  Groups 
H and J, however, appear to consist of patients with lower 
than average risk, yet their C-section rate is well above 
average. Interestingly, physician group G exhibits a 
surprisingly low C-section rate given the predicted 
aggregate risk of its patient population. 
 
 

 
 

 
 
Figure 3 shows a scatter plot of the ROC Area of the 
standard practice model evaluated individually on each 
physician group plotted against each group’s observed C-
section rate. The AUC for group H is lower than that of 
the other groups.  Either the model of standard practice 
makes less accurate predictions for patients in group H 
despite the model’s excellent calibration, or physicians in 
group H make decisions about C-section somewhat 
differently than is the practice in the other groups. 
 

Figure 2. Scatter Plot of the Predicted C-Section Rate vs. 
the Observed Rate in each Physician Practice 

Figure 1. Calibration of the  Standard Practice Model 



5. DISCUSSION 

5.1 Assumptions 
Our approach makes several assumptions. One is that by 
giving models intrinsic variables as inputs, they will be 
accurate enough to compensate for these factors, yet 
unable to compensate for extrinsic factors not given as 
inputs. As with most machine learning models, the 
difference between the observed and predicted risk is 
attributed to the risk due to these extrinsic factors. These 
assumptions are not fully justified because we may not 
capture all variables that relate to the health of the patient 
(missing important inputs) and because some of the 
extrinsic factors may correlate with the intrinsic variables 
(possibly allowing the model to partially account for 
extrinsic factors). 
 

 

 
 

5.2 Predicting Care vs. Standard Practice  
There are interesting differences between learning 
intended to make predictions for individual patients, and 
learning models of standard practice to retrospectively 
assess aggregate risk as done here.  One difference is that 
when making predictions for individual patients, 
overfitting must be avoided because it increases variance 
more than it reduces bias [9], thus hurting generalization 
performance. It is very important not to make mistakes 
when making predictions that will affect the care of 
individual patients. When using learning to retrospectively 
assess aggregate risk, however, this tradeoff is somewhat 
different.  Because the aggregate risk of a population of 
patients averages model predictions over that population, 

variance is reduced by the average and is thus less of a 
concern.  Some overfitting can be tolerated if it will 
reduce bias and improve model calibration.  Calibration in 
the low and high-risk tails of the distribution is 
particularly important.  We use bagging not because it is 
effective at reducing variance, but because experience 
suggests that it significantly improves the calibration of 
decision trees.  It would be interesting to extend the usual 
bias-variance decomposition so that the tradeoff between 
bias and variance can be better optimized for making 
aggregate predictions. 
 

6. FUTURE  WORK 

6.1 Standard Practice vs. Best Practice 
In this paper we use machine learning to evaluate how the 
decisions made by different physician groups compare to 
the standard practice of peer physicians.  We do not 
examine the quality of health care that results from the 
standard practice. An important extension of this work is 
to compare outcomes in the different physician groups to 
determine if differences in C-section rate correlate with 
quality of care.  Specifically, it would be informative to 
see if the difference between observed C-section rate and 
predicted rate correlates with quality of care. 
 
The ultimate goal of our work is to provide an evidence-
based means of reducing C-section rate in order to lower 
health care cost and improve maternal outcomes without 
worsening fetal outcomes.  The best evidence we know of 
that C-section rate can be lowered without adversely 
affecting outcomes comes from other countries that have 
lower C-section rates, but comparable outcomes. Access 
to a database of patients from other countries might allow 
us to perform analyses not possible with the U.S. database 
alone. 
 
One limitation of our current method is that it does not 
permit us to estimate confidence intervals for the 
aggregate risks predicted by the models.  Although all of 
our experiments yield results consistent with those 
presented here, it is important for us to develop a 
procedure for estimating the reliability of standard 
practice models. 
 

6.2 Other Applications 
The approach of training well calibrated models to predict 
standard practice and then using these models to assess 
the aggregate risks of different subpopulations is 
applicable to other problems in medical decision making. 
For example, we might determine if different 
subpopulations of patients with heart disease receive 
different rates of coronary bypass because they have 
different risk, or because of other factors such as patient 
socio-economic group, care provider (e.g., small practice 

Figure 3. Scatter Plot of the Predictions ROC Area vs. 
Observed C-Section Rate for each Physician Practice 



vs. large practice, or specialty practice vs. general 
practice), or health care insurance (e.g., HMO vs. PPO 
(pay-per-use)). 
 
 

7. SUMMARY 
We use decision trees with Bayesian smoothing and 
bagging to train models of standard practice for C-
section.  We use the models of standard practice to 
perform a retrospective evaluation of the C-section rate of 
different physician practices. Our goal is not to make 
accurate predictions for single patients, but to make 
accurate aggregate predictions for groups of patients.  
(By “accurate” we mean in accordance with common 
practice, not necessarily medically correct.)  Because we 
are interested in accurate aggregate predictions, it is 
important that our models be well calibrated.  We find that 
bagged decision trees yield excellent calibration in this 
domain.  Because the calibration is so good, we believe 
the resulting models are not biased for or against any one 
group or type of patients.   
 
Using the models to estimate the aggregate risk for the 17 
different physician practices yields interesting results.  
Our analysis suggests that several practices who had a C-
section rate 3-6% higher than the population average 
probably do not have a patient population with enough 
elevated risk to warrant this C-section rate. In fact, one of 
these practices sees patients whose aggregate risk for C-
section appears to be below the average risk. Other 
practices seeing these same patients probably would do 
fewer C-sections. At least one of the groups with elevated 
C-section rate, however, has a patient population that 
partially justifies the high C-section rate.  Their patient 
population truly is at elevated risk and warrants a higher 
C-section rate. 
 
Other factors not included in the trained models such as 
patient and physician preferences, or the type of health 
care funding, might explain why some groups receive 
more C-sections. Most patient groups have predicted C-
section rates similar to the observed rates, suggesting that 
most physician groups are performing C-sections at a rate 
in accordance with standard practice. Interestingly, there 
is one group that had 4% fewer C-sections than the model 
of standard practice predicts might be warranted. If this 
lower C-section rate does not increase the adverse 
outcomes, this practice may provide insight on how to 
safely lower the C-section rate. 
 
Acknowledgement. Rich Caruana received partial 
support from the Intelligent Information Systems Institute 
(IISI).  Radu Stefan Niculescu was supported by a 
Graduate Fellowship from the Merck Computational 

Biology and Chemistry Program at Carnegie Mellon 
University established by the Merck Company Foundation 
and by National Science Foundation (NSF) grant no. 
CCR-0122581. Matt Troup and Peng Jia helped perform 
preliminary experiments on this problem. 
 

REFERENCES 
 

[1] Bailit JL, Dooley SL, Peaceman AN. Risk 
Adjustment for Interhospital Comparison of Primary 
Cesarean Rates.  J. Obstetrics and Gynecology 1999; 
93:1025-1030. 

[2] Sims CJ, Myen L, Caruana R, Rao RB, Mitchell T, 
Krohn M. Predicting cesarean delivery with decision 
tree models. J. Obstetrics and Gynecology 
2000;183:1198-1206. 

[3] Pennsylvania Health Care Cost Containment Council. 
C-section and Vaginal Deliveries In Southwestern 
Pennsylvania.  Report dated July 1999. 

[4] Poma PA. Effects of obstetrician characteristics on 
cesarean delivery rates: A community hospital 
experience. J.  Obstetrics and Gynecology 1999; 
180:1364-1372. 

[5] Provost F, Fawcett T, Kohavi R. The Case Against 
Accuracy Estimation for Comparing Induction 
Algorithms. Proceedings of the Fifteenth International 
Conference on Machine Learning 1998. 

[6] Buntine W, Caruana R. Introduction to IND and 
recursive partitioning. Technical Report FIA-91-28, 
RIACS and NASA Ames Research Center, Moffett 
Field, CA, 1991. 

[7] Caruana R. An Non-Parametric EM-Style Algorithm 
for Imputing Missing Values. Proceedings of 
Artificial Intelligence and Statistics 2001. 

[8] Zell A, Mache N, Hubner R et al. "SNNS:Stuttgart 
Neural Network Simulator," Tech. Rep. 3/93, 
Institute for Parallel and Distributed High 
Performance Systems, University of Stuttgart, Fed. 
Rep. of Germany, 1993.  

[9] Bauer E, Kohavi R. An Empirical Comparison of 
Voting Classification Algorithms: Bagging, Boosting, 
and Variants. Machine Learning 1999;36:105-139. 

[10] Breiman L. Bagging Predictors. Machine Learning 
1996;24:123-140. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 135
	02: AMIA 2003 Symposium Proceedings − Page 136
	03: AMIA 2003 Symposium Proceedings − Page 137
	04: AMIA 2003 Symposium Proceedings − Page 138
	05: AMIA 2003 Symposium Proceedings − Page 139


